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Abstract We present a high-order spectral element method for solving layered me-
dia scattering problems featuring an operator that can be used to transparently
enforce the far-field boundary condition. The incorporation of this Dirichlet-to-
Neumann (DtN) map into the spectral element framework is a novel aspect of
this work, and the resulting method can accommodate plane-wave radiation of
arbitrary angle of incidence. In order to achieve this, the governing Helmholtz
equations subject to quasi-periodic boundary conditions are rewritten in terms of
periodic unknowns. We construct a spectral element operator to approximate the
DtN map, thus ensuring nonreflecting outgoing waves on the artificial boundaries
introduced to truncate the computational domain. We present an explicit formula
that accurately computes the Fourier coefficients of the solution in the spectral
element discretization space projected onto the boundary which is required by
the DtN map. Our solutions are represented by the tensor product basis of one-
dimensional Legendre-Lagrange interpolation polynomials based on the Gauss-
Lobatto-Legendre grids. We study the scattered field in singly and doubly layered
media with smooth and nonsmooth interfaces. We consider rectangular, triangular,
and sawtooth interfaces that are accurately represented by the body-fitted quadri-
lateral elements. We use GMRES iteration to solve the resulting linear system,
and we validate our results by demonstrating spectral convergence in comparison
with exact solutions and the results of an alternative computational method.
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1 Introduction

Scattering problems involving layered media arise in many engineering applications
in electromagnetics, optics, and acoustics. Over the years, robust and accurate
simulation capability has received increased attention as a cost-effective tool for
predictive measurement and analysis of modern physical systems. Highly accurate
boundary treatment and flexibility to treat complex geometries are essential for
solving layered media scattering problems arising in a broad range of applications.

Many competing numerical methods have been developed for these scattering
problems, such as the boundary integral and boundary element methods [1,2].
These surface methods require discretization only at the layer interfaces, thus sig-
nificantly reducing the number of unknowns to compute. With the correct choice
of the Green’s function, the far-field boundary conditions can be enforced exactly,
and these methods can deliver highly accurate solutions with reduced operation
counts. Such methods face a number of drawbacks, however, including the fact
that inhomogeneities away from the layer interfaces cannot be accommodated and
high-order accuracy can be realized only with specially designed quadrature nodes,
because of singularities in the Green’s function. Moreover, these methods typically
give rise to a dense linear system of equations whose solution requires precondi-
tioned iterative methods featuring accelerated matrix-vector products (e.g., fast
multipole methods [3]).

As an alternative, boundary perturbation methods have been explored. Bruno
and Reitich studied the method of field expansions [4–6], and Milder studied the
method of operator expansions [7,8,10–12,9]. These methods also pose surface
unknowns, thereby enjoying the favorable operation counts of surface integral
methods, while avoiding the subtle quadrature rules, dense linear systems, and
algorithms for matrix-vector product acceleration. However, these algorithms de-
pend on strong cancellations that can result in ill-conditioning [17–19]. Nicholls
and Reitich proposed an enhanced boundary perturbation algorithm, referred to
as the method of transformed field expansions (TFE) [20,13], which does not rely
on strong cancellations. In this approach, the resulting recursions can be used for
a direct, rigorous demonstration of the strong convergence of the relevant pertur-
bation expansions in an appropriate function space. Furthermore, these formulas
were proven to be a stable and accurate numerical scheme for simulating scattering
problems defined on layered periodic gratings. This was later generalized to the
case of irregularly bounded obstacles [14,15], multiply layered media for vector
electromagnetic scattering [21], and a rigorous numerical analysis was provided
in [13]. However, this method is limited when complex geometries and nonhomo-
geneous media are considered.

To address the limitations of these boundary methods, we consider a high-order
spectral element method for layered media problems [22]. Of particular interest,
in this paper we describe for the first time how a boundary operator, which trans-
parently enforces the far-field boundary condition, can be incorporated into the
spectral element framework. This is very much in the spirit of the DtN-FE method
of Han and Wu [23] and Keller, Givoli, and Grote [24–29] and Nicholls and Nigam
[30–32]. The relevant operator is the Dirichlet-to-Neumann (DtN) map [17–19],
which, in our formulation, produces the normal derivative of the truncated Fourier
series of the Dirichlet data on an artificial boundary introduced to truncate the
computational domain [20]. We present a novel formula for computing the Fourier
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data in spectral element discretization space, in particular, we consider incident
waves at arbitrary angles impinging on various types of periodic gratings, result-
ing in quasi-periodic solutions of the scalar Helmholtz equation. We rewrite our
governing equation in a form that eliminates the quasi-periodicity and solve the
reformulated scalar Helmholtz equation with periodic, Dirichlet, and transparent
boundary conditions. We solve various example problems and demonstrate our
computational results with validation. We note that the resulting linear system
is not Hermitian positive definite and thus we resort to the generalized minimum
residual (GMRES) method [36] for its solution.

This paper is organized as follows. In Section 2, we define the governing equa-
tions for our model problems and provide formulations. Section 3 discusses the
spectral element discretization, while Section 4 presents the computational results
and their validation. Section 5 summarizes our conclusion.

2 Problem Formulation

A downward-propagating time-harmonic incident plane wave of frequency ω can
be expressed in complex form as

Ūinc(x, y, t) = Uinc(x, y)e−iωt = eiκ·xe−iωt = ei(αx−βy)e−iωt,

where the wave vector κ = (α,−β) with β > 0 defines the propagation direction.
This will solve the scalar wave equation in a homogeneous medium with velocity
c,

∂2Ū

∂t2
− c2∆Ū = 0, (1)

if |κ|2 = α2 + β2 = ω2/c2 =: k2. More generally, time-harmonic solutions of (1)
can be written as

Ū(x, y, t) = U(x, y)e−iωt,

and the reduced field U(x, y) satisfies a scalar Helmholtz equation at each frequency
ω:

∆U + k2U = 0. (2)

To consider polychromatic waves, one can simply sum over different frequencies:

Ū(x, y, t) =
1

2π

∫ ∞
−∞

e−iωtU(x, y) dω.

Thus it suffices to work in the “frequency domain” by solving the Helmholtz equa-
tion as we do here.

2.1 Model Problems

In this paper we focus on singly and doubly layered media in two spatial dimensions
as shown in Figure 1. We define the unbounded domains,

Ω+
0 = {y > g(x)} and Ω−0 = {y < g(x)}, (3)
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with wave numbers k± = ω/c± in Ω±0 , respectively. For the layer interface we
consider a bounded, measurable, d–periodic function g(x+d) = g(x) which specifies

Γg = {(x, y) ∈ R2 |y = g(x)} (4)

that gives the shape of the d-periodic grating structure. Here we note that the
total reduced field is quasi-periodic [35]:

U(x+ d, y) = eiαdU(x, y).

For the single-layer model shown in Figure 1(a), a homogeneous Dirichlet boundary
condition is specified on Γg, denoted ΓD, and the scattered waves must be outgoing
as y → +∞. The Dirichlet boundary can be interpreted as an impenetrable lower
layer medium while the single-layer would be interpreted as the upper layer having
most of scattering phenomena. Thus the single-layer model can be also considered
as double-layered medium. For the double-layer model shown in Figure 1(b), the
total field is required to be continuous across the scatterer interface Γg, and the
scattered waves must be outgoing as y → ±∞.

These model problems can be described by the Helmholtz equation with proper
boundary conditions as follows.

(a) Model 1: single layer (b) Model 2: double layer

Fig. 1 Geometric illustration of the model problems.

Model 1. The total field U in the single layer Ω0 := Ω+
0 satisfies

∆U + k2U = 0 on Ω0, (5)

U(x+ d, y) = eiαdU(x, y) on Ω0, (6)

U(x, y) = 0 on ΓD. (7)
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Model 2. The total field U in the double layer Ω0 := Ω+
0 ∪Ω

−
0 satisfies

∆U + k2U = 0 on Ω0, (8)

U(x+ d, y) = eiαdU(x, y) on Ω0, (9)

where k = k± on Ω±0 .

2.2 Periodic Formulation

In normal incidence (α = 0) the solution U is x-periodic, however, for oblique
incidence (α 6= 0) the solution is quasi-periodic in the x-direction. In our algorithm
implementation, it is more convenient to handle periodic boundary conditions.
Thus we introduce a new variable u by

u(x, y) = e−iαxU(x, y), (10)

where u is periodic for any α from the fact that

u(x+ d, y) = e−iα(x+d)U(x+ d, y) = e−iα(x+d)eiαdU(x, y) = u(x, y).

Plugging (10) into Eqs. (5) and (8), we find

∆u+ (k2 − α2)u+ 2iα
∂u

∂x
= 0. (11)

We note that the first-order derivative term in Eq. (11) results from the quasi-
periodicity of the solution U with α 6= 0. This quasi-periodic term introduces new
operators to our formulation in addition to the usual Helmholtz operator.

2.3 Transparent Boundary Conditions

Separation of variables applied to the Helmholtz equations yields the following
periodic solutions, which are valid away from the interface (outside the grating
grooves):

u±(x, y) =
∞∑

p=−∞

{
Ape

iβ±p y +Bpe
−iβ±p y

}
ei(αp−α)x, (12)

where αp = α + 2πp
d and (β±p )2 = (k±)2 − α2

p for integer p. Defining the set of
propagating modes

K± :=
{
p ∈ Z | (k±)2 − α2

p > 0
}
,

we have

β±p =
√

(k±)2 − α2
p, p ∈ K± and β±p = i

√
α2
p − (k±)2, p 6∈ K±.

Assuming incident plane-wave radiation Uinc = ei(αx−βy) in Ω+
0 and Uinc ≡ 0 in

Ω−0 , we have uinc = e−iβy in Ω+
0 and uinc ≡ 0 in Ω−0 . The total field thus u can be

expressed as

u =

{
uinc + u+

scat in Ω+
0

u−scat in Ω−0
. (13)
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The scattered field is also of the form (12); however, the outgoing wave condition
eliminates either Ap or Bp, so that

u+
scat =

∞∑
p=−∞

û+
scat,pe

i(αp−α)xeiβ
+
p y, u−scat =

∞∑
p=−∞

û−scat,pe
i(αp−α)xe−iβ

−
p y, (14)

which are the well-known Rayleigh expansions [33,16].
Now, we discuss a boundary operator that enforces the outgoing wave trans-

parently at a boundary at finite distance from the interface. Consider the model
problems defined on the finite computational domains, as shown in Figure 1:

Ω+ = {g(x) < y < b, 0 ≤ x ≤ d} and Ω− = {a < y < g(x), 0 ≤ x ≤ d}.

Here we define a hyperplane Γ = {(x, y) ∈ R2, 0 ≤ x ≤ d, y = c∗} such that
Γ∩Γg = ∅, where the constant c∗ can represent either a or b for our model problems.
Without loss of generality we focus on c∗ = b in Ω+ and drop the + superscript.
Taking the normal derivative of uscat on Γ , we define the operator T by

T [uscat] |y=c∗ :=
∂uscat

∂n
|y=c∗= n · ∇uscat |y=c∗ ,

where n = (nx, ny) is the outward unit normal vector. From (14), the Dirichlet-to-
Neumann (DtN) map T can be expressed as

T [uscat] |y=c∗= ny
∂uscat

∂y
|y=c∗= ny

∞∑
p=−∞

(iβp)ûscat,pe
i(αp−α)xeiβpc

∗
, (15)

where n = (0,−1) is outward to {y > b}. We note that ûscat,pe
iβpc

∗
is related to

the one-dimensional Fourier coefficient of uscat on Γ . Solutions of (11) and their
normal derivatives are continuous across Γ , and the DtN map enforces this feature
exactly by

T [u− uinc] =
∂(u− uinc)

∂n

or

∂nu− T [u] = ∂y(uinc)− T [uinc] =: ρ.

2.4 Governing Equations

Defining Γ+ = Γ ⊂ Ω+
0 (if c∗ = b) and Γ− = Γ ⊂ Ω−0 (if c∗ = a), we can summarize

our governing equations for our model problems as follows.

Model 1. For the single-layer case, with Ω = Ω+, our governing equations are

∆u+ (k2 − α2)u+ 2iα
∂u

∂x
= 0 on Ω, (16)

u(x+ d, y) = u(x, y) on Ω, (17)

∂nu− T+[u] = ρ on Γ+, (18)

u = 0 on ΓD. (19)
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Model 2. For the double layer case, with Ω = Ω+ ∪ Ω− ∪ Γg, our governing
equations are

∆u+ (k2 − α2)u+ 2iα
∂u

∂x
= 0 on Ω, (20)

u(x+ d, y) = u(x, y) on Ω, (21)

∂nu− T+[u] = ρ on Γ+, (22)

∂nu− T−[u] = 0 on Γ−. (23)

2.5 Variational Formulation

In this section, we derive the variational formulations of our governing equations for
the model problems (16)–(19) and (20)–(23). Consider a test function υ ∈ H1

per(Ω)
where

H1
per(Ω) := {ϕ ∈ H1(Ω) | ϕ(x+ d, y) = ϕ(x, y)}, (24)

and H1(Ω) is the classical Hilbert space of L2(Ω) functions with one weak deriva-
tive in L2(Ω). Multiplying (16) and (20) by υ and integrating the results over Ω,
whose boundary is denoted by ∂Ω, we have∫

Ω

∇u · ∇υdΩ −
∫
∂Ω

n · ∇uυdS −
∫
Ω

(k2 − α2)uυdΩ −
∫
Ω

2iα
∂u

∂x
υdΩ = 0. (25)

The surface integrations with the boundary conditions applied on the single layer
are ∫

∂Ω

n · ∇uυdS =

∫
Γ+

T+[u]υdΓ −
∫
Γ+

ρυdΓ −
∫
ΓD

n · ∇uυdΓ, (26)

and those for the double layer are∫
∂Ω

n · ∇uυdS =

∫
Γ+

T+[u]υdΓ −
∫
Γ+

ρυdΓ +

∫
Γ−

T−[u]υdΓ. (27)

We seek a solution u ∈ H1
per(Ω), shown to exist in [34], such that

a(u, υ) = 〈ρ, υ〉 for all υ ∈ H1
per(Ω), (28)

where the sesquilinear form for each model is defined as follows.

Model 1. From (25) and (26), we have

a(u, υ) =

∫
Ω

(
∇u · ∇υ − (k2 − α2)uυ − 2iα

∂u

∂x
υ

)
dΩ −

∫
Γ+

T+[u]υdΓ. (29)

Model 2. From (25) and (27), we have

a(u, υ) =

∫
Ω

(
∇u · ∇υ − (k2 − α2)uυ − 2iα

∂u

∂x
υ

)
dΩ−

∫
Γ+

T+[u]υdΓ−
∫
Γ−

T−[u]υdΓ.

(30)
The linear functional 〈·, v〉 in (28) is defined for both models as follows:

〈ρ, υ〉 =

∫
Γ+

ρυdΓ.
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In particular, we define the following notation for the volume integrations:

A(u, υ) =

∫
Ω

∇u · ∇υdΩ, B(u, υ) =

∫
Ω

uυdΩ, C(u, υ) =

∫
Ω

∂u

∂x
υdΩ, (31)

and for the surface integrations:

T (u, υ) =

∫
Γ

T [u]υdΓ, F (ρ, υ) =

∫
Γ+

ρυdΓ. (32)

Here Γ = Γ+ and T = T+ for the single-layer geometry, and Γ = Γ+ ∪ Γ− and
T = {T+, T−} for the double-layer case. We note that in the upper layer

T (u, υ) = ny

∞∑
p=−∞

iβpûp

∫
Γ

eidpxυdx

= ny

∞∑
p=−∞

iβpûp

∫
Γ

e−idpxυdx = ny

∞∑
p=−∞

iβpûpυ̂p, (33)

where dp = 2πp
d = αp − α in Eq. (15). On the other hand, we have

T (υ, u) = ny

∞∑
p=−∞

iβpυ̂pûp = ny

∞∑
p=−∞

(iβp)ûpυ̂p, (34)

so there is no easily identified symmetry in the operator T .

3 Spectral Element Discretization

We denote our computational domain as Ω = ∪Ee=1Ω
e, where Ωe represents nonover-

lapping body-conforming quadrilateral elements. Let us define a finite-dimensional
approximation space VN ⊂ H1(Ω) such that VN = span{ψij(ξ, η)}Ni,j=0. With
this choice of approximation space, we consider a local approximate solution
ue(x, y) ∈ VN , or simply ue, that has the representation

ue(x, y) =
N∑

i,j=0

ueijψij(ξ, η). (35)

The basis coefficients ueij are the nodal values ue(xi, yj) on Ωe, and the ba-
sis ψij(ξ, η) = `i(ξ)`j(η), or simply ψij , has a tensor product form of the one-
dimensional Nth-order Legendre-Lagrange interpolation polynomials given as

`i(ξ) = [N(N + 1)−1(1− ξ2)L′N (ξ)]/[(ξ − ξi)LN (ξi)] for ξ ∈ [−1, 1], (36)

based on the Gauss-Lobatto-Legendre (GLL) quadrature nodes ξi with the Nth-
order Legendre polynomial LN and its derivative L′N . We map each physical co-
ordinate (x, y) ∈ Ωe onto the reference domain (ξ, η) ∈ I = [−1, 1]2 through the
Gordon-Hall mapping [22] and formulate the computational scheme on the refer-
ence domain.
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(a) Local numbering (unassembled representation)

(b) Global numbering (assembled representation)

Fig. 2 Illustration of a solution vector in a local numbering and a global numbering, using an
example mesh with (E,N) = (2, 3): Ω = Ω1 ∪Ω2 and the GLL nodes (◦).

Let us denote our numerical solution u on Ω by the vector

u := (u1, u2, ..., ul̂, ..., un) := (u1, u2, ..., ue, ..., uE)T , (37)

ue := (ue1, u
e
2, ..., u

e
l , ..., u

e
(N+1)(N+1))

T := (ue00, u
e
10, ..., u

e
ij , ..., u

e
NN )T , (38)

where n = E(N + 1)2 is the total number of basis coefficients, and l̂ = 1 + i +
j(N + 1) + (e − 1)(N + 1)2 and l = 1 + i + j(N + 1) translate the two-index
coefficient representation into a vector form, with the leading index i. In Figure 2,
we show a mesh with two elements E = 2 including the GLL grids for N = 3 on
Ω = Ω1∪Ω2. Figure 2(a) illustrates a local ordering of a solution vector u based on
the two-index expression in an unassembled representation for the coincident grids,
u1

3i = u2
0i (i = 0, ..., 3), appearing redundantly. In Figure 2(b), we demonstrate the

same solution vector in a global ordering in an assembled representation using only
the distinct nodes, denoted by

u = (u1, u2, ..., un̄)T . (39)

The size (n̄ < n) of the solution vector u in the assembled representation is re-
duced after eliminating the redundancy from the coincident grids. In practice, our
implementations are based on elementwise computations using the data structure
in the local ordering. The global ordering is used when it is more convenient to
describe our method in this paper.
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3.1 Stiffness Matrices

To obtain the stiffness matrix, we consider the following inner product in Eq. (31):

A(u, υ) =

∫
Ω

∇u · ∇υdΩ =

∫
Ω

(
∂u

∂x

∂υ

∂x
+
∂u

∂y

∂υ

∂y

)
dΩ, (40)

where the partial derivatives are expressed by the chain rule for x = x(ξ, η) and
y = y(ξ, η) on Ωe:

∂u

∂x

∂υ

∂x
=

(
∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x

)(
∂υ

∂ξ

∂ξ

∂x
+
∂υ

∂η

∂η

∂x

)
=
∂u

∂ξ

∂υ

∂ξ
Gξξxx +

∂u

∂η

∂υ

∂η
Gηηxx +

∂u

∂ξ

∂υ

∂η
Gξηxx +

∂u

∂η

∂υ

∂ξ
Gξηxx, (41)

∂u

∂y

∂υ

∂y
=

(
∂u

∂ξ

∂ξ

∂y
+
∂u

∂η

∂η

∂y

)(
∂υ

∂ξ

∂ξ

∂y
+
∂υ

∂η

∂η

∂y

)
=
∂u

∂ξ

∂υ

∂ξ
Gξξyy +

∂u

∂η

∂υ

∂η
Gηηyy +

∂u

∂ξ

∂υ

∂η
Gξηyy +

∂u

∂η

∂υ

∂ξ
Gξηyy , (42)

introducing the short notations for the geometric factors as Gξξxx = ∂ξ
∂x

∂ξ
∂x , Gηηxx =

∂η
∂x

∂η
∂x , Gξηxx = ∂ξ

∂x
∂η
∂x , Gξξyy = ∂ξ

∂y
∂ξ
∂y , Gηηyy = ∂η

∂y
∂η
∂y , and Gξηyy = ∂ξ

∂y
∂η
∂y . Using the

expansion (35) for u, υ ∈ VN , we derive the discrete operator for (40) including
(41)–(42) as

AN (u, υ) =
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

ῡe
îĵ

(∫
I

∂ψij
∂ξ

∂ψîĵ
∂ξ
Ḡ11Jdr +

∂ψij
∂ξ

∂ψîĵ
∂η
Ḡ12Jdr

)
ueij

+
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

ῡe
îĵ

(∫
I

∂ψij
∂η

∂ψîĵ
∂ξ
Ḡ21Jdr +

∂ψij
∂η

∂ψîĵ
∂η
Ḡ22Jdr

)
ueij (43)

where Jdr = Jdξdη. On each local element, the Jacobian J and the geometric
factors, defined by

Ḡ11 = (Gξξxx + Gξξyy), Ḡ12 = (Gξηxx + Gξηyy), (44)

Ḡ21 = (Gξηxx + Gξηyy), Ḡ22 = (Gηηxx + Gηηyy ), (45)

are introduced from the coordinate transformation and computed from the follow-
ing relation:

J =

∣∣∣∣∣ ∂x∂ξ ∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣ from

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)(
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)
≡
(

1 0
0 1

)
. (46)
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We apply the numerical quadrature on the GLL nodes for the integrations in
Eq. (43) as∫

I

∂ψij
∂ξ

∂ψîĵ
∂ξ
Ḡ11dr =

N∑
k,m=0

Ḡ11
kmJkmwkwml

′
i(ξk)lj(ηm)l′

î
(ξk)lĵ(ηm), (47)

∫
I

∂ψij
∂ξ

∂ψîĵ
∂η
Ḡ12dr =

N∑
k,m=0

Ḡ12
kmJkmwkwml

′
i(ξk)lj(ηm)l̂i(ξk)l′

ĵ
(ηm), (48)

∫
I

∂ψij
∂η

∂ψîĵ
∂ξ
Ḡ21dr =

N∑
k,m=0

Ḡ21
kmJkmwkwmli(ξk)l′j(ηm)l′

î
(ξk)lĵ(ηm), (49)

∫
I

∂ψij
∂η

∂ψîĵ
∂η
Ḡ22dr =

N∑
k,m=0

Ḡ22
kmJkmwkwmli(ξk)l′j(ηm)l̂i(ξk)l′

ĵ
(ηm), (50)

where Ḡ(·)
km and Jkm represent the geometric values and the Jacobian at the nodal

points, respectively, and wk and wm are the one-dimensional GLL quadrature
weights. Note that Ḡ12

km = Ḡ21
km. We now have (40) in a discrete form as the follow-

ing:

AN (u, υ) =
E∑
e=1

(ῡe)T
[

Dξ

Dη

]T [
G11 G12

G21 G22

]e [
Dξ

Dη

]
ue (51)

=
E∑
e=1

(ῡe)TDTGeDue =
E∑
e=1

(ῡe)TAeue, (52)

where the differentiation matrices with respect to ξ and η, Dξ and Dη, respectively,
are written as

Dξ = I⊗ D̂ and Dη = D̂⊗ I

in a tensor product form of the one-dimensional differentiation matrix D̂ki = l′i(ξk)
and the identity matrix I in R(N+1)×(N+1). The entries of the one-dimensional
differentiation matrix are D̂ij = LN (ξi)

LN (ξj)(ξi−ξj) (i 6= j); D̂00 = − (N+1)N
4 ; D̂NN =

(N+1)N
4 ; D̂ii = 0 (0 < i < N), which is skew-centrosymmetric D̂ij = −D̂N−i,N−j .

Equation (51) involves the pointwise multiplication of the nodal values ue = [uel ]

by each diagonal component of G(·) = [G
(·)
l ] = diag{Ḡ(·)

kmJkmwkwm} for l = k +
(N + 1)(m − 1) on the nodal points on each local element Ωe. Let us denote the
stiffness matrix on Ω as A, using the local stiffness matrices Ae, represented by

A =



A1

. . .

Ae

. . .

AE

 with Ae = DTGeD. (53)

Then we can write Eq. (51) simply as

AN (u, υ) = v̄TAu. (54)



12 Ying He et al.

Here we note that the matrix A is symmetric from the fact that

(Ae)T = (DTGeD)T = DT (Ge)TD = DT (Ge)D = Ae. (55)

Arithmetic Operations: The matrix A is never explicitly formed. We perform
matrix-matrix multiplication acting only on the block diagonal matrices Ae. We
begin with the tensor product–based derivative evaluations (51) that can be recast
as matrix-matrix products on each element:

uξ := (I⊗ D̂)ue := D̂[u]e, (56)

uη := (D̂⊗ I)ue := [u]eD̂T , (57)

where ue is a vector arranged in columnwise consecutive entries of ueij , advancing
with the leading index (i) as shown in (38). In (56), ue is treated as an (N + 1)×
(N + 1) matrix, denoted by [u]e as

[u]e =

 u
e
00 ue01 ... ue0N
...

...
. . .

...
ueN0 u

e
N1 ... ueNN

 . (58)

This requires 2E(N + 1)3 operations on Ω. The pointwise multiplications with the
geometric factors ux = G11uξ+G12uη and uy = G21uξ+G22uη require 6E(N+1)2

operations. Then we compute the summation of transposed derivative operators,
Dξux+Dηuy, involving 4E(N+1)3+E(N+1)2 operations. Thus the total operation
for Au is 6E(N + 1)3 + 7E(N + 1)2. The leading-order storage requirement for the
factored stiffness matrix is 3E(N + 1)2, because of the relation G12 = G21 on Ωe.

Direct Stiffness Summation: The solution vector in (54) is based on the unassem-
bled representation, recalling Figure 2(a), without applying the continuity at the
element interface between neighboring elements. To construct the solution vector
continuous across element interfaces on the coincident nodal values,

(xij , yij)
e = (xîĵ , yîĵ)

ê → ueij = uê
îĵ

for e 6= ê, (59)

we introduce a Boolean connectivity matrix Q [22] that maps the global represen-
tation u to the local representation u, and its transpose QT that maps the local
representation u to the global representation u. Then we can define the following:

u = Qu and u∗ = QTu. (60)

The action of Q on u returns the copy entries of u on the coincident nodes,
referred to as the scatter operation. The action of QT on u returns u∗ with the
sum entries of u on the coincident nodes, referred to as the gather operation. The
interior nodes are unchanged from both of the actions. Using these matrices, we
can rewrite Eq. (54) for the continuous solution u as

AN (u, υ) = v̄TQTAQu = v̄T Āu. (61)

For a continuous solution u in the local ordering representation, the following
equivalence holds:

QTAQu ⇐⇒
(
QQT

)
Au. (62)
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We note that the gather-scatter operation QQT can be viewed as a single op-
eration, involving summation of the variables on the shared interface nodes and
redistribution of them to their original locations within one communication. The
operation is referred to as direct stiffness summation, or simply dssum. In this paper,
we use the following notation for the gather-scatter operation:

dssum := QQT . (63)

In practical implementations, we write our algorithms in an element-based format
by utilizing matrix-vector products evaluated independently on each local element.
Thus it is natural to consider the dssum approach and perform the local-to-local
transformation as in the right-hand side of (62), that is, dssum(Au). We build
a local-to-global mapping array to handle the actions of Q and QT without con-
structing Q and QT explicitly. A detailed description of the algorithms and parallel
implementations can be found in Chapter 4 and Chapter 8 of [22].

3.2 Mass Matrices

To obtain the mass matrix, we consider the following inner product:

B(u, υ) =

∫
Ω

uυdΩ, (64)

which can be discretized as

BN (u, υ) =
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

ῡeij

(∫
Ωe

ψijψîĵdΩ

)
ueij

=
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

ῡeij

(∫
I

ψijψîĵJdr

)
ueij

=
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

ῡeij

 N∑
k,m=0

Jkmwkwmli(ξk)lj(ηm)l̂i(ξk)lĵ(ηm)

ueij

=
E∑
e=1

(ῡe)TJe
(
M̂⊗ M̂

)
ue =

E∑
e=1

(ῡe)TBeue, (65)

where M̂ = diag{wk} is the one-dimensional mass matrix and Je = [Jell] =
diag{Jkm} for l = k + (N + 1)(m − 1). We can denote the mass matrix B, us-
ing the local mass matrices Be, as

B =



B1

. . .

Be

. . .

BE

 with Be = Je(M̂⊗ M̂), (66)
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which is fully diagonal. Then we can write Eq. (65) simply as

BN (u, υ) = v̄TBu. (67)

For a continuous solution, Eq. (67) in the assembled representation can be ex-
pressed as

BN (u, υ) = v̄TQTBQu = v̄T B̄u. (68)

3.3 The Quasi-Periodic Matrix

We consider the following inner product for the quasi-periodic operator in Eq. (25):

C(u, υ) =

∫
Ω

∂u

∂x
υdΩ, (69)

which can be discretized as

CN (u, υ) =
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

ῡeij

(∫
Ωe

∂ψij
∂x

ψîĵdΩ

)
ueij

=
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

ῡeij

(∫
I

∂ψij
∂x

ψîĵJdr

)
ueij

=
E∑
e=1

N∑
î,ĵ=0

N∑
i,j=0

ῡeij

 N∑
k,m=0

Jkmwkwml
′
i(ξk)lj(ηm)l̂i(ξk)lĵ(ηm)

ueij

=
E∑
e=1

(ῡe)TJe
(
M̂⊗ M̂D̂

)
ue =

E∑
e=1

(ῡe)TJe
(
M̂⊗ Ĉ

)
ue

=
E∑
e=1

(ῡe)TCeue. (70)

By convention, (69) could be referred as a convective operator in computational
fluids. In this context, this relates to the quasi-periodic term in (11) for oblique
incidence (α 6= 0). Thus we refer to it as a quasi-periodic operator, because the
operator is a derivative, resulting from imposing the periodicity for the quasi-
periodic solution in (10). Then, we define the quasi-periodic matrix C on Ω using
the local quasi-periodic matrices as

C =



C1

. . .

Ce

. . .

CE

 with Ce = Je(M̂⊗ Ĉ). (71)

We can write Eq. (70) simply as

CN (u, υ) = v̄TCu. (72)
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For the continuous solution, Eq. (72) in the assembled representation can be ex-
pressed as

CN (u, υ) = v̄TQTCQu = v̄T C̄u. (73)

3.4 Spectral Element Dirichlet-to-Neumann Operator

In this section, we formulate a spectral element discretization for the Dirichlet-to-
Neumann (DtN) map T . For simplicity we consider the operator T in the upper
layer, Ω+

0 and assume that the (ξ, η) coordinates of the element are aligned with

(x, y). Let us denote Γ = ∪Êê=1Γ
ê, where Γ ê = Ωê∩∂Ω are nonoverlapping bound-

ary surfaces on the local elements Ωê. We define a DtN-to-local mapping array
that contains the indices of the transparent boundary surface nodes (i, j, ê) to the
local index (i, j, e) := DtN-to-local(i, j, ê). We note that these nodes in y fall on
the index either with j = 0 or with j = N , which will be represented simply by a
fixed index as j = jb.

DtN Matrix T: We can represent our approximate solution on Γ ê in the form of
(35) as

uê(x, b) =
N∑

i,j=0

uêij li(ξ)lj(η(b)) =
N∑
i=0

uêijb li(ξ). (74)

From Eqs. (32)–(33), we have

T (u, υ) =

∫
Γ

T [u]υdΓ =
∞∑

p=−∞
iβpûp

∫
Γ

eidpxυdx, (75)

where dp = 2πp
d and ûp are the one-dimensional Fourier coefficients of u(x, b) on Γ

given as

ûp =
1

d

∫ d

0

u(x′, b)e−idpx
′
dx′ ≈ 1

d

Ê∑
ê=1

∫
Γ ê

uê(x′, b)e−idpx
′
dx′. (76)

Plugging (76) into (75) with a finite expansion of T [u] (|p| ≤ P ) and applying (74),
we have

TN (u, υ) =
P∑

p=−P
iβp

1

d

Ê∑
ê=1

∫
Γ ê

uê(x′, b)e−idpx
′
dx′

 Ê∑
ē=1

∫
Γ ē

eidpxυdx


=

P∑
p=−P

iβp

1

d

Ê∑
ê=1

N∑
i=0

uêijb

∫
Γ ê

li(ξ)e
−idpx′dx′

 Ê∑
ē=1

∫
Γ ē

eidpxυdx

 .

Choosing υ = l̂i(ξ) with a different index set of î on each Ωê and defining the
following,

sê,pi =
1√
d

∫
Γ ê

li(ξ)e
−idpx′dx′ and sē,−p

î
=

1√
d

∫
Γ ē

l̂i(ξ)e
idpxdx, (77)
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we can express (75) in a simplified form as

TN (u, υ) =
Ê∑
ê=1

N∑
i=0

uêijb

 P∑
p=−P

iβps
ê,p
i

 Ê∑
ē=1

sē,−p
î

 =
Ê∑
ê=1

N∑
i=0

uêijbT
ê
îi
. (78)

Here we note that sê,−pi is the complex conjugate of sê,pi from the following:

sê,pi =
1√
d

∫
Γ ê

li(ξ)e−idpxdx =
1√
d

∫
Γ ê

li(ξ)e
idpxdx = sê,−pi .

Thus we need only to compute sê,pi for p ≥ 0 to obtain

T ê
îi

= i

β0s
ê,0
i

Ê∑
ē=1

sē,0
î

+
P∑
p=1

[
βps

ê,p
i + β−ps

ê,p
i

] Ê∑
ē=1

sē,p
î

 , (79)

where βp = β−p only if α = 0; βp 6= β−p for α 6= 0. Therefore, no particular relation
can be found between βp and β−p in general. Here T ê

îi
is a complex number, so we

can alternatively write (78) as

TN (u, υ) =
Ê∑
ê=1

N∑
i=0

uêijbT
ê
îi

=
Ê∑
ê=1

N∑
i=0

uêijb

[
(T ê
îi

)real + i(T ê
îi

)imag

]
.

Now, we can map the values of T ê
îi

into a matrix Te =
[
Te
l̂l

]
for l̂ = î+ (N + 1)j

and l = i+(N+1)j from the DtN-to-local mapping (̂i, j, e) := DtN-to-local(̂i, jb, ê)
and (i, j, e) := DtN-to-local(i, jb, ê). Similarly, {uêijb} can be mapped to the local
data {ueij}. Note that the entries of Te are zeros if the indices are not indicating
the DtN boundary nodes. We now have Eq. (78) in the local representation form
as

T N (u, υ) =
E∑
e=1

(υe)TTeue = vTTu = vT (Tr + iTi)u, (80)

where Tr and Ti represent the real and imaginary part of the complex matrix T.
Thus we have the assembled representation of (80) as

T N (u, υ) = vTQTTQu = vT T̄u = vT (T̄r + iT̄i)u.

For ρ in (32), we apply notation similar to that used for u. Then we have the
following:

FN (ρ, υ) =
E∑
e=1

(υe)TBeρe = vTBρ = vTFρ,

with the assembled representation as

FN (ρ, υ) = vTQTBQρ = vT F̄ρ.

Matrix T: We next discuss how to compute sê,pi in Eq. (79). Note that the data is
precomputed only once. One might apply the GLL quadrature for the integrations
when dp is small. For large dp, however, the GLL quadrature is not accurate enough
to capture the high-frequency modes, leading to loss of accuracy in the solution.
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One can consider the discrete FFT algorithm since it is the pth component of
the inverse DFFT of function li(ξ). However, since li(ξ) has only a very small
portion of compact support on Γ , we can compute it directly on its local compact
support using refined GLL quadrature points on each Γ ê. Another approach is to
use the relation to the Bessel function, which can be more efficient than the other
approach.

In this paper, we discuss the computation of sê,pi based on the Bessel function
representation. We have written li(ξ) in the finite expansion of the mth-order
Legendre polynomials given as

li(ξ) =
N∑
m=0

(l̂i)mLm(ξ), (81)

where (l̂i)m are the Legendre expansion coefficients defined by

(l̂i)m =
2m+ 1

2

∫ 1

−1

li(ξ)Lm(ξ)dξ. (82)

Then, substituting (81) in (77) and using simply the notation x, instead of x′, we
have

sê,pi =
1√
d

∫
Γ ê

li(ξ(x))e−idpxdx =
1√
d

N∑
m=0

(l̂i)m

(∫ 1

−1

Lm(ξ)e−idpx(ξ)J êsdξ

)
, (83)

where J ês is the surface Jacobian on Γ ê. In fact, each Γ ê is represented by an
interval [xêmin, x

ê
max] with the coordinate transformation by x(ξ) = âeξ + b̂e with

âe = (xêmax−xêmin)/2 and b̂e = (xêmax +xêmin)/2, so that J ês ≡ âe is constant on Γ ê.
Then, Eq. (83) becomes

sê,pi =
âe√
d

N∑
m=0

(l̂i)md
p,ê
m with qp,êm =

∫ 1

−1

Lm(ξ)e−idp(âeξ+b̂e)dξ. (84)

Now we need to compute the two terms (l̂i)m and qp,êm , in (84). To compute (l̂i)m,
one might apply the GLL quadrature for the integration term in (82) as follows:

(l̂i)m =
2m+ 1

2

N∑
k=0

li(ξk)Lm(ξk)wk =
2m+ 1

2
Lm(ξi)wi. (85)

An alternative approach is to evaluate (81) on the GLL grids in [−1, 1], resulting
in the form

LL̂ =

 L0(ξ0) L1(ξ0) · · · Lm(ξ0)
...

...
...

...
L0(ξN ) L1(ξN ) · · · Lm(ξN )


 (l̂0)0 (l̂1)0 · · · (l̂N )0

...
...

...
...

(l̂0)N (l̂1)N · · · (l̂N )N

 ≡ I,

and compute the inverse of the matrix L = [Lji] = [Li(ξj)] to obtain L̂ = [L̂mi] =

[(l̂i)m] = L−1. To compute qp,êm , we recall that the Legendre polynomials are related
to the Bessel functions as∫ 1

−1

Lm(ξ)e−ixξdξ =
1

im

√
2π

x
Jm+1/2(x) =

2

im
jm(x) for x ∈ R,
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where jm is the spherical Bessel function and Jm is the ordinary Bessel function
with the relation

jm(x) =

√
π

2x
Jm+1/2(x).

Then, we can write

qp,êm =

∫ 1

−1

Lm(ξ)e−idp(âeξ+b̂e)dξ = e−idpb̂e
(

2

im
jm(dpâe)

)
. (86)

From (85) and (86), we have the final form of sê,pi by

sê,pi =
âee
−idpb̂e
√
d

N∑
m=0

(l̂i)m

(
2

im
jm(dpâe)

)
.

3.5 Matrix Structure and Eigenvalues

We arrange our solution as a real vector of length 2n expressed by uN = [uNr , u
N
i ]T ,

where uNr and uNi represent real and imaginary parts of the solution, respectively.
The spectral element discretization leads to a linear system:

HuN = F , (87)

where

H :=

[
A− (k2 − α2)B + Tr −Ti − 2αC

Ti + 2αC A− (k2 − α2)B + Tr

]
and F :=

[
Fρr

Fρi

]
.

Equation (87) in assembled representation can be expressed as

H̄uN = F̄ , (88)

where

H̄ :=

[
Ā− (k2 − α2)B̄ + T̄r −T̄i − 2αC̄

T̄i + 2αC̄ Ā− (k2 − α2)B̄ + T̄r

]
and F̄ :=

[
F̄ρ

r
F̄ρ

i

]
.

In Figure 3, we demonstrate the structure of matrix and its eigenvalue distri-
bution for our spectral element operator. For simplicity, we chose a simple box
geometry for the domain [0, 2π]× [−1, 1] with equi-sized non-deformed rectangular
elements (3 elements in x and 2 elements in y directions) and a relatively small
N = 3. Figure 3(a) demonstrates the case of single layer with DtN boundary on
the top and Dirichlet boundary at the bottom and the wave number k = 1.5, and
Figure3(b) demonstrates the case of double layer, defining Γg at y = 0, with DtN
boundaries at the top and bottom and the wave numbers k = 1.5 on the top layer
and k = 2.5 on the bottom layer.

In Table 1, we list the condition numbers for these operators. The resulting
linear system (88) is not Hermitian positive definite and thus it was natural choice
to consider the GMRES method [36] for its solution.
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(a) H̄ for single layer with transparent/Dirichlet (top/bottom) BCs

(b) H̄ for double layer with transparent/transparent (top/bottom) BCs

Fig. 3 Spatial operator in matrix structure (assembled) and its eigenvalue distribution

Table 1 Condition numbers for H̄
Transparent (top) Transparent (top/bottom)

E N Condition # E N Condition #

3×2

3 1.1873947E+02

3×2

3 5.9542135E+01
5 4.6002926E+02 5 2.3470212E+02
7 1.1704056E+03 7 5.9022047E+02
9 2.4000224E+03 9 1.2031346E+03
11 4.2909436E+03 11 2.1437669E+03
13 6.9854623E+03 13 3.4825776E+03

4 Computational Results

In this section, we consider scattering returns by three types of periodic grating
surfaces: flat, smooth curved, and nonsmooth. We consider different angles of
incidence impinging on the scattering surface in singly and doubly layered media.
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(a) Mesh and GLL grids with E = 4× 4, N = 8

(b) Real part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

(c) Imaginary part of the scattered field UN
scat: with α = 0.1 (left) and α = 1.0 (right)

Fig. 4 Single layer: k = 1.5 (yellow); transparent (top) and Dirichlet (bottom) boundary
conditions.

We solve the scalar Helmholtz equation and compute the total field in a finite
computational domain with transparent boundary conditions enforced at artificial
boundaries based on the spectral element discretization. For validation of our
computational approach, in the case of a flat grating we compare our results with
analytic solutions and provide convergence studies. For smooth curved periodic
surface gratings, we consider sinusoidal grooves and compare our results with
those from the transformed field expansion (TFE) method [20,13]. For nonsmooth
periodic surface gratings (rectangular, triangular, and sawtooth) separating doubly
layered media we demonstrate the accuracy of our computational solutions by
studying the energy defect [4–6,16].

4.1 Flat Scattering Surface

To begin, we consider singly and doubly layered media with flat interface in the
x-direction. For these configurations, there exist analytic solutions for incident
waves at arbitrary angles of incidence κ = (α,−β). Here we consider downward
propagating incidence with β > 0.

Single Layer: Consider a finite computational domain Ω = [0, 2π]× [0, 1] with the
scattering surface defined by Γg = {(x, y) ∈ Ω | y = 0} and the artificial boundary
defined at Γ = {(x, y) ∈ Ω | y = 1}. We apply homogeneous Dirichlet boundary
conditions on the scatterer Γg and a transparent boundary condition via the DtN
operator on Γ . Figure 4(a) shows our quadrilateral element mesh with E = 4× 4
and the GLL grids for N = 8. Considering the incident field

Uinc(x, y) = ei(αx−β(y+1)),
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(a) Mesh and GLL grids with E = 4× 4, N = 8

(b) Real part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

(c) Imaginary part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

Fig. 5 Double layer: k+ = 1.5 (yellow) and k− = 2.5 (blue); transparent (top/bottom)
boundary conditions.

impinging on Γg, we can show the total field solution to be

Uexact(x, y) = ei(αx−β(y+1)) − ei(αx+β(y−1)).

For a fixed wavenumber k = 1.5 in the single layer medium, we consider incident
waves for α = 0.1 and α = 1.0. Figures 4(b)–4(c) show the numerical solutions
of the scattered fields that are obtained by subtracting the incident field from
the total field: UN

scat = UN −UN
inc, where UN

inc denotes the incident field Uexact
inc

evaluated on the GLL grid.

Double Layer: We now consider a computational domain Ω = [0, 2π] × [−1, 1]
with flat scattering surface Γg = {(x, y) ∈ Ω | y = 0} and artificial boundaries at
Γ = Γ+ ∪ Γ−, where Γ+ = {(x, y) ∈ Ω | y = 1} and Γ− = {(x, y) ∈ Ω | y = −1}.
We apply transparent boundary conditions here using the DtN operator on the
GLL points on Γ . Figure 5(a) shows our mesh with E = 4× 4 and the GLL grids
for N = 8. The incident field and analytic solution are given as follows:

– On Ω+ = [0, 2π]× [0, 1] with k+ = 1.5 and β+ > 0:

Uinc(x, y) = ei(αx−β
+y),

Uexact(x, y) = ei(αx−β
+y) + c+ei(αx+β+y).

– On Ω− = [0, 2π]× [−1, 0] with k− = 2.5 and β− > 0:

Uexact(x, y) = c−ei(αx−β
−y).
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(a) Single layer with flat interface

(b) Double layer with flat interface

Fig. 6 Convergence and GMRES iteration counts versus mesh refinement with E=4×4 and
N=3,5,7,9,11,13,15. The approximation order for the Fourier expansion in the DtN operator
is P = 5.

Here the (Fresnel) constants are

c− =
2β+

β+ + β−
, c+ =

β+ − β−

β+ + β−
.

Again, we consider incoming incident waves on Ω+ for α = 0.1 and α = 1.0, and we
simulate the total field. In Figures 5(b)–5(c) we display the scattered field UN

scat.

Convergence: Figure 6 depicts the outcomes of our convergence studies, measured
in the maximum error, for scattered fields in singly and doubly layered media:

error = ‖Uexact
scat −UN

scat‖∞,

where Uexact
scat = Uexact − Uinc is the exact solution for the scattered field. The

errors show spectral convergence as N increases. The approximation order for the
Fourier data used in the DtN operator is P = 5. Table 1 shows that the condition
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(a) Mesh and GLL grids: E = 4× 4, N = 8

(b) Real part of the scattered field uN
scat: α = 0.1 (left) and α = 1.0 (right)

(c) Imaginary part of the scattered field uN
scat: α = 0.1 (left) and α = 1.0 (right)

Fig. 7 Single layer: k = 1.5 (yellow); transparent (top) and Dirichlet (bottom) boundary
conditions.

numbers increase as N increases, thus explaining why the errors do not improve
beyond 10−10. Figures 6(a)–6(b) demonstrate the iteration count increasing up to
∼ 900 for N = 15.

Computation: In practice, we transform UN
inc into uNinc = e−iαxUN

inc and compute
the solution of Eq. (11) uN with periodic boundary treatment in x. Then, we
transform back to UN through the relation UN = eiαxuN . This approach makes
our algorithm much simpler by eliminating additional boundary treatments in
the x-direction. The same idea is applied for solving all other example problems
presented in the remaining sections.

4.2 Smooth Curved Scattering Surfaces

In this section, we examine singly and doubly layered media with smooth, curved
interfaces. Dirichlet and transparent boundary conditions are once again applied in
the y-direction. For these configurations no analytic solutions are available, so we
validate our results in comparison with results provided by the TFE method [20,
13].

Single Layer: Consider a computational domain Ω = [0, 2π] × [g(x), 1] with the
scattering surface defined by Γg = {(x, y) ∈ Ω | y = g(x)} and an artificial boundary
defined on Γ = {(x, y) ∈ Ω | y = 1}. We choose a sinusoidal interface g(x) = ε cos(x)
with the grating depth varying with ε. We apply homogeneous Dirichlet boundary
conditions on Γg and the DtN operator on Γ . Figure 7(a) displays the mesh with
E = 4 × 4 and the GLL grids for N = 8, representing g(x) with surface fitted
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(a) Mesh and GLL grids: E = 4× 4, N = 8

(b) Real part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

(c) Imaginary part of the scattered field UN
scat: α = 0.1 (left) and α = 1.0 (right)

Fig. 8 Double layer: k+ = 1.5 (yellow) and k− = 2.5 (blue); transparent (top/bottom)
boundary conditions.

elements for the case of ε = 0.1. We consider the incident field

Uinc(x, y) = ei(αx−βy)

with varying incident angles α = 0.1 and α = 1.0 for a fixed wavenumber k = 1.5
with β > 0. The scattered fields are shown in Figures 7(b)–7(c).

Double Layer: Consider a computational domain Ω = Ω− ∪ Ω+, consisting of
two different media Ω+ = [0, 2π] × [g(x), 1] and Ω− = [0, 2π] × [−1, g(x)] with a
sinusoidal interface shaped by g(x) = ε cos(x). We define the artificial boundaries
at Γ = Γ+ ∪ Γ−, where Γ+ = {(x, y) ∈ Ω | y = 1} and Γ− = {(x, y) ∈ Ω | y =
−1}. Figure 8(a) shows the mesh with E = 4 × 4 and the GLL grids for N = 8,
representing g(x) with surface-fitted elements for the case of ε = 0.1. We consider
incoming incident waves

Uinc(x, y) = ei(αx−β
+y),

in Ω+ with k+ = 1.5 and β+ > 0 and varying incidence angles α = 0.1 and α = 1.0.
We choose the wavenumber k− = 2.5 on Ω−, and in Figures 8(b)–8(c) we show
the scattered fields.

Convergence: Figure 9 displays the convergence of our numerical solutions, mea-
sured in the maximum error, for the scattered field in singly and doubly layered
media in comparison with results given by the TFE method:

error = ‖UTFE
scat −UN

scat‖∞.
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(a) Single layer with smooth curved scattering interface

(b) Double layer with smooth curved scattering interface

Fig. 9 Convergence and GMRES iteration counts versus mesh refinement with E=4×4 and
N=3,5,7,9,11,13,15. The approximation order for the Fourier expansion in the DtN operator
is P = 5.

Here UTFE
scat is the scattered field approximation given by the TFE method. Our

solution UN
scat on the GLL grids is interpolated to the TFE grid in order to compute

the difference of the solutions on the same grids. The approximation order for the
Fourier data used in the DtN operator is fixed with P = 5. In Figure 9, the
errors show spectral convergence as N increases with the GMRES iteration count
increasing up to 1700 ∼ 1900 for N = 15, as demonstrated in Figures 9(a)–9(b).
We note that computational results demonstrated throughout the paper, we used
tolerance of 1E-10 for the GMRES solution.

In Tables 2–4, we demonstrate the convergence of varying wave numbers and
P using the same mesh configuration as in Figure 8(a). In Table 2, we show
convergence for varying wave numbers, ranging k− = 2.5 ∼ 32.5, with a fixed
k+ = 1.5 and a relatively fine resolution with N = 17 and P = 9. The errors
increase because the resolution in terms of N and P is not enough to capture
the higher frequency waves well compared to the lower frequency waves as k−

increases. In Tables 3–4, we used fine grid resolution with a higher N and observe
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Table 2 Convergence of errorr = ‖real(UTFE
scat −UN

scat)‖∞, errori = ‖imag(UTFE
scat −UN

scat)‖∞
and GMRES iteration count for varying wave numbers with P = 9 and N = 17.

g(x) = cos(x), Oblique Incidence α = 0.1
E (k+, k−) errorr errori iter #

16

(1.5,2.5) 1.7524E-10 1.6718E-10 2199
(1.5,4.5) 1.2329E-10 1.3031E-10 2578
(1.5,8.5) 9.9584E-11 9.0917E-10 3373
(1.5,16.5) 6.2485E-09 5.3194E-09 4846
(1.5,22.5) 2.0038E-07 1.2528E-07 5784
(1.5,32.5) 1.2439E-05 1.2840E-05 6742

Table 3 Convergence of errorr = ‖real(UTFE
scat −UN

scat)‖∞, errori = ‖imag(UTFE
scat −UN

scat)‖∞
and GMRES iteration count for varying P with N = 11 and (k+, k−) = (1.5, 2.5).

g(x) = cos(x), Oblique Incidence α = 0.1
E P errorr errori iter #

16

0 4.0639E-01 8.5534E-01 1391
1 4.5017E-03 7.3669E-03 1304
2 2.8951E-05 2.0889E-05 1276
3 3.7341E-07 4.9301E-07 1248
4 9.1279E-09 1.4023E-08 1247
5 2.5614E-10 4.8626E-10 1247
6 1.1452E-10 1.1020E-10 1247
7 1.0750E-10 1.0557E-10 1247
8 1.0368E-10 1.0009E-10 1247
9 1.0414E-10 1.0169E-10 1247

Table 4 Convergence of errorr = ‖real(UTFE
scat −UN

scat)‖∞, errori = ‖imag(UTFE
scat −UN

scat)‖∞
and GMRES iteration count for varying P with N = 13 and (k+, k−) = (1.5, 8.5).

g(x) = cos(x), Oblique Incidence α = 0.1
E P errorr errori iter #

16

0 1.6319E+00 1.3417E+00 2601
1 5.9357E-01 5.6400E-01 2571
2 2.4980E-01 2.4801E-01 2550
3 4.8806E-03 5.9880E-03 2490
4 2.0239E-04 1.5874E-04 2432
5 2.0005E-06 1.4451E-06 2351
6 7.0879E-08 3.6509E-08 2381
7 3.0704E-10 2.8059E-10 2361
8 1.0474E-10 1.1638E-10 2386
9 9.7235E-11 9.9168E-11 2384
10 9.0224E-11 9.6817E-11 2384
11 9.3851E-11 9.8553E-11 2385

the convergence as we increase P . Table 3 demonstrates the convergence with
varying P with a fixed N = 11 and (k+, k−) = (1.5, 2.5), showing that the relatively
small P = 5 is a good choice as k− is relatively small. Table 4 demonstrates the
convergence with varying P with a fixed N = 13 and (k+, k−) = (1.5, 8.5), showing
that the relatively higher P = 9 is a good choice as k− is relatively large. As for the
convergence depending on the distance of the artificial boundary from the grating
interface, the detailed study can be found in [37].
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4.3 Nonsmooth Scattering Surfaces

To begin this section, we recall the scattering efficiencies and the energy defect
measure of convergence. With these, we examine the behavior of our algorithm
in a doubly layered media with rectangular, triangular, and sawtooth scatter-
ing interfaces, which severely challenge the capabilities of the TFE approach. We
demonstrate the convergence of our method using this energy defect measure.

Energy Defect: We recall the Rayleigh expansions (14) for the reflected and
transmitted fields,

U+(x, y) =
∞∑

p=−∞
Û+
p e

iαpx+iβ+
p y, U−(x, y) =

∞∑
p=−∞

Û−p e
iαpx−iβ−p y, (89)

and the efficiencies

e+p =
β+
p

β

∣∣∣Û+
p

∣∣∣2 , and e−p =
β−p
β

∣∣∣Û−p ∣∣∣2 , (90)

which measure the energy at wave modes p propagated away from the grating
interface. It is a classical calculation to show that for lossless media, a principle of
conservation of energy [16] holds:∑

p∈K+

e+p +
∑
p∈K−

e−p = 1. (91)

For an explicit demonstration we refer the interested reader to [20].
One measure of the fidelity of a numerical scheme for the approximation of

scattering returns from a grating structure is to test the validity of this principle,
for example, via the “energy defect” [16]:

εdefect =

∣∣∣∣∣∣1−
 ∑
p∈K+, |p|≤P

e+p +
∑

p∈K−, |p|≤P

e−p

∣∣∣∣∣∣ . (92)

While it is not definitive, since the evanescent modes play no role in the energy
defect, it is certainly indicative of a convergent scheme.

Double Layer: We consider a computational domain Ω = Ω− ∪ Ω+ with Ω+ =
[0, 2π] × [g(x), 1] and Ω− = [0, 2π] × [−1, g(x)], including rectangular, triangular,
and sawtooth grooves for the scattering surface g(x), as shown in Figures 10–11.
Artificial boundaries are set at Γ = Γ+ ∪ Γ− for Γ+ = {(x, y) ∈ Ω | y = 1} and
Γ− = {(x, y) ∈ Ω | y = −1}. We consider incoming incident waves U inc(x, y) =

ei(αx−β
+y) on Ω+ for varying incident angles of α = 0 and α = 0.2 with k+ = 1.5

and β+ > 0. The wavenumber k− = 2.5 is defined on Ω−, and Figures 10–11 show
the computed scattered field. In Table 5, we demonstrate the convergence of our
numerical solutions measured in the energy defect, showing spectral convergence
as N and the number of GMRES iterations are increased to 700 ∼ 1400 for N = 9.
The approximation order for the Fourier data used in the DtN operator is fixed
with P = 5.
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(a) Rectangular groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (64, 7)

(b) Triangular groove: α = 0.0 (left) and α = 0.2 (right); (E,N)=(48,7)

(c) Sawtooth groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (48, 7)

Fig. 10 Real part of the scattered field.

5 Conclusions

In this contribution we have studied quasi-periodic solutions of the scalar Helmholtz
equation in two dimensions in the context of layered media scattering problems.
We have considered singly and doubly layered media with periodic surface inter-
faces. We used body-fitted quadrilateral element meshes with spectral element dis-
cretization based on the GLL grids. We imposed nonreflecting, outgoing boundary
conditions at artificial boundaries which form a truncated computational domain.
We introduced an accurate formulation of the spectral element DtN operator by
representing the Fourier data in relation to the Bessel function, rather than com-
puting the Fourier coefficients using the GLL quadrature integration, which can
cause loss of accuracy depending on the grid resolution. Because of the quasi-
periodicity of the solutions and the appearance of the DtN operator, the resulting
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(a) Rectangular groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (64, 7)

(b) Triangular groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (48, 7)

(c) Sawtooth groove: α = 0.0 (left) and α = 0.2 (right); (E,N) = (48, 7)

Fig. 11 Imaginary part of the scattered field.

linear system is not Hermitian positive definite. Therefore, we applied the GMRES
algorithm for solving the resulting linear system. We demonstrated our computa-
tional results for the scattered field and validated them with convergence studies
showing spectral convergence.
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